
Chapter 8

Rotationally extruding 3D objects from 2D objects

So far you have been creating a lot of models and customizing your car designs while developing

solid parametric modelling skills and exploring different features of OpenSCAD. It’s quite

impressive to notice for a moment that every model that you have so far created makes use of

just 3 primitives. The sphere, the cube and the cylinder. By combining these primitives with the

help of the transformation commands you can create a plethora of models. There are still

models though that you can’t create just by using these 3 primitives. One such example is the

following wheel design.

The above wheel design requires the creation of an object that looks like a donut.

This donut shaped object can’t be created with the use of the sphere, cube and cylinder

primitives. Instead it requires the use of 2D primitives and a new command which can create 3D

shapes from 2D profiles. Specifically, the donut can be created by first defining a circular 2D

profile using the circle primitive and then rotationally extruding this profile using the

rotate_extrude command.

$fa = 1;

$fs = 0.4;

wheel_radius = 12;

tyre_diameter = 6;

translate([wheel_radius - tyre_diameter/2, 0])circle(d=tyre_diameter);

$fa = 1;

$fs = 0.4;

wheel_radius = 12;

tyre_diameter = 6;

rotate_extrude(angle=360) {

 translate([wheel_radius - tyre_diameter/2, 0])circle(d=tyre_diameter);

}

There are a few things you should notice about the creation of the 2D profile. The 2D profile in

this case is just circle object. The to be rotationally extruded 2D profile should lie on the half

plane where the positive X axis belongs. The circle command is one of OpenSCAD’s available 2D

primitives. The size of the circle is defined by specifying its diameter which is set equal to a

variable named tyre_diameter, since the donut-shaped object corresponds to the tyre of the

wheel. Aside from the circle primitive there is another available 2D primitive, the square

primitive. 2D primitive objects are always created on the XY plane and are considered to have

zero thickness. Thus, 2D primitives are not used directly as a part of a model, but indirectly to

define 2D profiles on which the rotate_extrude and linear_extrude commands can be applied to

form 3D objects.

You should notice a few things about the use of the rotate_extrude command. The rotate

extrude command is used to create 3D objects and always requires as an input a 2D profile. The

commands that create the desired 2D profile need to be placed inside the pair of curly brackets

that follows the rotate_extrude command. The 3D object that is created by the rotate_extrude

command is the result of rotating the 2D profile around the Y axis. The resulting 3D object

though is positioned in such a way as if the Y axis was rotated in the place of the Z axis. This is

the only confusing part about using the rotate_extrude command that you should be aware of.

Although the rotate_extrude command produces a 3D object that is the result of rotating the

supplied 2D profile around the Y axis, the final product that you get is this object rotated 90

degrees around the X axis so that the Y axis has been rotated up to the Z axis.

To state the previous more clearly, the rotate_extrude command takes a 2D profile as an input.

Then it creates a 3D object which is the result of rotating the supplied 2D profile around the Y

axis.

But the 3D model it actually produces is rotated by 90 degrees around the X axis.

The rotate_extrude command has one input parameter named angle. The angle parameter is

used to define how many degrees the 2D profile will be rotated around the Y axis. In this case

the angle parameter is set equal to 360 degrees which corresponds to a full circle.

Setting the angle parameter equal to 60 degrees would create the following model.

While setting it equal to 270 degrees would create the following one. And so forth.

Complete the new wheel design by defining the missing cylinder object. The height of the
cylinder should be equal to the value of a wheel_width variable, while the radius of the
cylinder should be equal to wheel_radius – tyre_diameter/2. The cylinder should be centred
on the origin.

$fa = 1;

$fs = 0.4;

wheel_radius = 12;

wheel_width = 4;

tyre_diameter = 6;

rotate_extrude(angle=360) {

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

}

cylinder(h=wheel_width, r=wheel_radius - tyre_diameter/2, center=true);

To make this wheel compatible with the models from the previous chapters rotate it by 90
degrees around the X axis. Turn this wheel design into a module named
rounded_simple_wheel and add it on your vehicle_parts.scad script for later use.

…

module rounded_simple_wheel(wheel_radius=12, wheel_width=4, tyre_diameter=6) {

 rotate([90,0,0]) {

 rotate_extrude(angle=360) {

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

 }

 cylinder(h=wheel_width, r=wheel_radius - tyre_diameter/2, center=true);

 }

}

…

The above wheel is an axisymmetric object, which means it exhibits symmetry around an axis.
Specifically, the axis of symmetry is the axis around which the 2D profile was rotated to form
the 3D object. When an object is axisymmetric it can be created with just one rotate_extrude
command as long as the appropriate 2D profile is supplied. This is not the case with the above
wheel design as the center part was added with a cylinder command separate from the
rotational extrusion. Remove the cylinder command from the above module and make
appropriate additions on the supplied 2D profile so that the whole wheel is created by the
rotate_extrude command.

…

translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

translate([0,-wheel_width/2])square([wheel_radius-tyre_diameter/2,wheel_width]);

…

…

module rounded_simple_wheel(wheel_radius=12, wheel_width=4, tyre_diameter=6) {

 rotate([90,0,0]) {

 rotate_extrude(angle=360) {

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

 translate([0,-wheel_width/2])square([wheel_radius-tyre_diameter/2,wheel_width]);

 }

 }

}

…

You should remember that axisymmetric objects can be completely created out of a

rotate_extrude command. The previous wheel design is a concreate example of this. Whether

you decide to create an axisymmetric object by suppling the 2D profile of the whole object and

by using a single rotate_extrude or by using a rotate_extrude command only for its parts that

can’t be created in any other way, depends on each case and is up to you. If you wanted for

example to further modularize your wheel designs and separate them into combinable tire and

rim modules, you would inevitably need to create the donut-shaped tire using a rotate_extrude

command. Since in this case the rim of the wheel would be a separate module without a

rotate_extrude command already present in it, the simplest and most straight forward way to

create it would be by using a cylinder command.

Challenge

It’s time to put your new knowledge into practice to create a rim for a mini robot car project.

Extend the rounded_simple_wheel module, so that the wheel design has a hole on its hub
that can be used for mounting it on an axle. To do so you would need to subtract a cylinder
from the existing model using a difference command. The diameter of the hole should be
equal to a new module input parameter named axle_diameter. The default value of this
parameter should be 3 units. By the way in which you define the height of the cylinder you
should guarantee that the cylinder is always a bit longer than the width of the wheel to avoid
any errors when using the difference command. After saving the modified module you should
use it to create a version a wheel with wheel_radius, wheel_width, tire_diameter and
axle_diameter of 20, 6, 4 and 5 units respectively.

…

module rounded_simple_wheel(wheel_radius=12, wheel_width=4, tyre_diameter=6,

axle_diameter=3) {

 difference() {

 // wheel

 rotate([90,0,0]) {

 rotate_extrude(angle=360) {

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

 translate([0,-wheel_width/2])square([wheel_radius-tyre_diameter/2,wheel_width]);

 }

 }

 // axle hole

 rotate([90,0,0])cylinder(h=wheel_width+1,r=axle_diameter/2,center=true);

 }

}

…

…

rounded_simple_wheel(wheel_radius=20, wheel_width=6, tyre_diameter=4, axle_diameter=5);

…

This wheel design looks about right for a mini robot car application, but you could do something

to give more traction to your robot. Instead of 3D printing the whole wheel, you could just 3D

print the rim and then add an O-ring or rubber band as the tire for more traction. The resulting

wheel would look like the following image, where the O-ring or rubber band is represented by

the blue color.

The corresponding rim that you would have to 3D print in this case is the following.

Using the rounded_simple_wheel module as a guide, create a new module named robot_rim.
The robot_rim module should have the same input parameters as the rounded_simple_wheel
module. Add all necessary commands to the robot_rim module so that it creates the above
rim design. There are two way you in which can do this.
*The first way is to subtract the circle that corresponds to the tire from the square that
corresponds to the rim in the definition of the design’s 2D profile inside the rotate_extrude
command and then to additionally subtract the axle’s cylinder from the resulting 3D object to
get the final rim design.
*The second way is to subtract a donut-shaped object that corresponds to the tire and the
cylinder that corresponds to the axle hole from the larger cylinder that corresponds to the
rim.
Remember that there is no right or wrong choice and in practice you would most likely go
with the option that came first on your head or made more sense to you. But since you are
just developing your design intuition you should try both ways and see which one you like the
most.

*First approach

…

module rounded_simple_wheel(wheel_radius=12, wheel_width=4, tyre_diameter=6,

axle_diameter=3) {

 rotate([90,0,0])difference() {

 // resulting rim

 rotate_extrude(angle=360) {

 difference() {

 // cylindrical rim prodile

 translate([0,-wheel_width/2])square([wheel_radius-tyre_diameter/2,wheel_width]);

 // tire profile

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

 }

 }

 // axle hole

 cylinder(h=wheel_width+1,r=axle_diameter/2,center=true);

 }

}

…

*Second approach

…

module rounded_simple_wheel(wheel_radius=12, wheel_width=4, tyre_diameter=6,

axle_diameter=3) {

 rotate([90,0,0])difference() {

 // cylindrical rim

 cylinder(h=wheel_width,r=wheel_radius-tyre_diameter/2,center=true);

 // tire

 rotate_extrude(angle=360) {

 translate([wheel_radius-tyre_diameter/2,0])circle(d=tyre_diameter);

 }

 // axle hole

 cylinder(h=wheel_width+1,r=axle_diameter/2,center=true);

 }

}

…

If you weren’t 3D printing this rim but instead manufacturing it, the second approach would be

more appropriate. This is because it would force you to think of your design as starting from a

solid piece of metal and then taking its final shape by consecutive manufacturing processes that

remove material from it.

Linearly extruding 3D objects from 2D objects

As briefly mentioned, there is another OpenSCAD command that can be used to create 3D

objects from supplied 2D profiles. This is the linear_extrude command. In contrast to the

rotate_extrude command, linear_extrude creates 3D object by extending along the Z axis a 2D

profile that lies on the XY plane. Similar to the rotate_extrude command, linear_extrude can be

used when the 3D object you want to create can’t be directly created by combining available 3D

primitives. On such example is the following.

$fa = 1;

$fs = 0.4;

linear_extrude(height=50)scale([2,1,1])circle(d=10);

The above object is a tube that has the following profile.

$fa = 1;

$fs = 0.4;

scale([2,1,1])circle(d=10);

There are a few points you should notice regarding the use of linear_extrude. The syntax of

linear_extrude is similar to the syntax of the rotate_extrude command. The commands that

create the 2D profile that will be extruded along the Z axis need to be placed inside a pair of

curly brackets that follows the linear_extrude command. The parameter height is used to define

how many units along the Z axis the 2D profile is going to be extruded. By default, the 2D profile

is extruded along the positive direction of the Z axis by an amount of units equal to the value

assigned to the height parameter.

By passing an additional parameter named center and setting it equal to true, the 2D profile is

extruded along both directions of the Z axis. The total length of the resulting object will still be

equal to the height parameter.

…

linear_extrude(height=50,center=true)scale([2,1,1])circle(d=10);

…

An additional parameter named twist can also be used to twist the resulting 3D object around

the Z axis by the specified angle.

…

linear_extrude(height=50,center=true,twist=120)scale([2,1,1])circle(d=10);

…

Finally, another parameter named scale can be used to scale one end of the resulting 3D by the

specified scaling factor.

…

linear_extrude(height=50,center=true,twist=120,scale=1.5)scale([2,1,1])circle(d=10);

…

It should be pretty clear by now how the rotate_extrude and linear_extrude commands give you

the ability to create objects that wouldn’t be possible by directly combining the available 3D

primitives. You can use these commands to create more abstract and artistic designs but let’s

see how you could use the linear_extrude command to create a new car body.

Use the linear_extrude command similar to the above examples in order to create the
following car body. You should create a new module named extruded_car_body. The module
should have a length, rear_height, rear_width and scaling_factor input parameter. The
default values of the parameters should be 80, 20, 25 and 0.5 units respectively. The length
and scaling factor parameters of the module will be used in the call to linear_extrude
command to set the values of its height and scale parameters. The supplied 2D profile should
be a circle that has been resized according to the rear_height and rear_width parameters.

module rounded_car_body(length=80, rear_height=20, rear_width=25, scaling_factor=0.5) {

rotate([0,-

90,0])linear_extrude(height=length,center=true,scale=scaling_factor)resize([rear_height,rear_wi

dth])circle(d=rear_height);

}

Extend the previous module by adding a boolean input parameter named rounded. The
default value of the parameter should be false. If the rounded parameter is set to true, then
two additional objects should be created at the front and rear of the body in order to make in
rounded as in the following image. These two objects are spheres that have been resized and
scaled. Try figuring out an appropriate way to resize and scale the sphere to achieve a result
similar to the image below.

…

rounded_car_body(rounded=true);

…

…

module rounded_car_body(length=80, rear_height=20, rear_width=25, scaling_factor=0.5,

rounded=false) {

 // center part

 rotate([0,-

90,0])linear_extrude(height=length,center=true,scale=scaling_factor)resize([rear_height,rear_wi

dth])circle(d=rear_height);

 if (rounded) {

 // rear part

 translate([length/2,0,0])resize([rear_height,rear_width,rear_height])sphere(d=rear_height);

 // front part

 translate([-

length/2,0,0])scale(scaling_factor)resize([rear_height,rear_width,rear_height])sphere(d=rear_h

eight);

 }

}

…

Use the new rounded body in any car design that you like.

As mentioned, the rotate_extrude and linear_extrude commands can also be used to create

more abstract objects. When the supplied 2D profile is created using the available circle and

square 2D primitives and when the twist and scale parameters of the linear_extrude command

are not utilized, then the resulting 3D object could also be directly created using the available 3D

primitives. What really makes the use of these commands much more powerful is the ability to

create any 2D profile that is not a combination of circles and squares but rather an arbitrary

shape. This ability is available through the use of the polygon 2D primitive which and you are

going to learn about in the next chapter.

