
Chapter 1

A few words about OpenSCAD

OpenSCAD is a solid 3D modeler that enables the creation of parametric models using its

scripting language. Models are created by utilizing a technic called constructive solid modeling.

According to this technic simple objects can be transformed and combined in order to create

almost any complex model.

Getting started with the Tutorial

This tutorial is a follow along tutorial. As you are following the examples you will be asked to

modify and extend them as well as create your own models. To move on please install

OpenSCAD and start from a blank model.

Basic information about the OpenSCAD environment

The first thing that you should notice is that the window of OpenSCAD is divided into two

columns. The left column is a text editor, where you will be typing the OpenSCAD scripting

language to create your models. Any model that you are ever going to create is going to be

"typed out" in this text editor. The top of the right column is the "virtual" 3D space where your

models will exist. The only thing that you should currently be able to find there is the annotated

reference axes X, Y and Z. The bottom of the right column is the console, where OpenSCAD will

be printing any error messages or other information as you build your models. One final thing

that you should notice is the presence of one action bar over the text editor and one below the

reference axes. You will be introduced to the available actions and you will use them as the

tutorial moves on.

Creating your first object

Your first object is going to be a perfect cube with side length of 10. In order to create it you

need to type the following code in the text editor and hit the preview (first) icon on the action

bar below the reference axes.

cube(size=10);

The are a few fundamental concepts that you should set straight from the start regarding the

OpenSCAD scripting language, especially if you don’t have a programming background. The

word cube is part of OpenSCAD scripting language and is used to command OpenSCAD to create

a cube. The cube command is followed by a pair of parentheses, inside of which the parameter

size is defined to be 10. Any definition of parameters that a command may require is always

done inside a pair of matching parentheses that follow the command word. The semicolon after

the last parenthesis indicates the end of this statement and helps OpenSCAD to parse the script

that you have typed in the text editor. Because a semicolon is used to indicate the end of each

statement you have the freedom to format your code in any way you like by inserting

whitespace.

Try adding some whitespace between the word cube and the first parenthesis and then hit
preview. Is your cube created? Do you get any error message? Try adding some additional
whitespace in different places and hit preview again to see what you can get away with
before getting an error message in the console. What happens if you add whitespace
between the syllables cu and be of the word cube and hit preview? What happens if you
delete the semicolon?

You just read "hit preview" three times in the last paragraph. When you hit preview OpenSCAD

parses your script and creates the appropriate model. Every time you make a change to your

script (ex. adding whitespace) or later when adding additional statements, you need to hit

preview to see the effect of these changes.

Try changing the size of the cube to 20 and see what happens. Did you remember to hit
preview in order to see your changes take place?

Creating a slightly different cube

A cube doesn’t have to be perfect. A cube can have different side lengths. Use the following

statement to create a cube with side lengths of 20, 30 and 50.

cube([20,30,50]);

The first thing that you should notice is that this cube is quite large compared to the previous

one. If fact it is large enough that it doesn’t fit in the viewport. In order to fix this, you can move

your mouse over the viewport and scroll out until you can see the whole cube. You can always

zoom in and out by moving your mouse over the viewport and using the scroll wheel.

Alternatively, you can use the zoom in (forth) and out (fifth) icons on the action bar below the

viewport. You can let OpenSCAD automatically choose a convenient zoom level by using the

view all (third) icon in the same action bar.

Try moving your mouse over the viewport and using the scroll wheel to zoom in and out. Try
zooming in and out using the corresponding icons. Let OpenSCAD choose a zoom level for
you.

Apart from zooming in and out you can also move and rotate the view of your model. To do so

you need to move your mouse over the viewport and drag while holding right click to move or

drag while holding left click to rotate. You can reset the view by using the reset view (sixth) icon

on the action bar below the viewport.

Try dragging your mouse over the viewport while holding right or left click to move or rotate
the view of your model. See how long you can mess around before you need to reset the
view.

The second thing that you should notice is that in order to create a cube with different side

lengths you need to define a pair of brackets with three values inside the parentheses. The pair

of brackets is used to denote a vector of values. The values of the vector need to be comma-

separated and correspond to the cube side lengths along X, Y and Z axis. When the cube

command is used with a vector of three values as its input, OpenSCAD creates a cube with

different side lengths that correspond to the values of the vector. Remember that you

previously used the cube command to create a perfect cube by defining the value of the

parameter size. Most OpenSCAD commands can be used with different parameters, even with

more, less or no parameters to achieve different results.

Try using the cube command with no parameters. What happens? Use the cube command to
create a cube with side lengths of 50, 5 and 10. Use the cube command to create a perfect
cube with side length of 17.25.

You should notice that every cube is created on the first octant. You can define an additional

parameter named center and set it equal to true in order to make the cube centered on the

origin. The complete statement is the following.

cube([20,30,50],center=true);

Notice that when more than one parameter is defined inside the parentheses, they need to be

separated with a comma.

Try creating a perfect cube or a cube with different side lengths. Use an appropriate
additional input parameter to make this cube centered on the origin. If you like add some
whitespace before and after the comma that separates the two parameters.

Adding more objects and translating objects

The constructive solid modelling approach uses a number of fundamental objects along with a

number of ways to transform and combine these objects to create more complex models. The

cube that you have been using in the previous examples is one such fundamental object. The

fundamental objects are also called primitives and are directly available in OpenSCAD scripting

language. A car for example is not an OpenSCAD primitive, as there is no corresponding keyword

in the scripting language. This makes absolute sense because OpenSCAD is a set of modelling

tools rather than a library of predefined models. Using the available tools, you can combine the

available primitives to create your own car. To do this you need to know how to add more than

one object to your model.

First create a cube with side lengths of 60, 20 and 10 that is centered on the origin.

cube([60,20,10],center=true);

In order to add a second cube to your model type and identical statement in the next line of the

text editor, but change the side lengths to 30, 20 and 10.

cube([60,20,10],center=true);

cube([30,20,10],center=true);

You should not be able to see any change in your model because the second cube is not larger

than the first cube in any direction and is currently completely covered by the first cube. By

modifying the second statement in the following way, you can translate the second cube to

locate it partially above the top of the first cube.

cube([60,20,10],center=true);

translate([0,0,5])cube([30,20,10],center=true);

You achieved this by using the translate command which is one of the available transformations.

The translate command as well as the rest of the transformations don’t create any object on

their own. They are rather applied on existing objects to modify them in a certain way. The

translate command can be used to move an object to any point in space. The input parameter

for the translate command is a vector of three values. Each value indicates the amount of units

that the object will be moved along the X, Y and Z axis. You should notice that there is no

semicolon after the translate command. What follows the translate command is the definition

of the object that you want to translate. The semicolon is added at the end to indicate the

completion of the statement.

Try changing the input parameter of the translate command so that the cube is translated 5
units along the X axis and 10 units along the Z axis. Try adding some whitespace if you would
like to format this statement in a different way. Try adding a semicolon after the translate
command.

The cylinder primitive and rotating objects

The model that you just created looks like the body of a car that has bad aerodynamics. That’s

ok. You will be making the car look a lot more interesting and aerodynamic in the following

chapters. For now, you are going to use the cylinder primitive and the rotate transformation to

add wheels and axles to your car. You can create a wheel by adding a third statement that

consists of the cylinder command. You will need to define two input parameters, h and r. The

first one will be the height of the cylinder while the second one will be its radius.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

cylinder(h=3,r=8);

You should notice that the cylinder is hidden by the rest of the objects. You can use the translate

command to make the cylinder visible by translating it 20 units along the negative direction of

the Y axis.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([0,-20,0])cylinder(h=3,r=8);

The wheel is now visible, but your car won’t go anywhere if its not properly placed. You can use

the rotate command to make the wheel stand straight. To do so you need to rotate it 90

degrees around the X axis.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

rotate([90,0,0])translate([0,-20,0])cylinder(h=3,r=8);

The first thing you should notice is the absence of semicolon between the rotate and translate

command. You should be already getting familiar with this concept. The semicolon is only added

at the end of a statement. You can keep adding as many transformation commands as you like

in a similar fashion, but you should not include a semicolon between them.

The second thing you should notice is that the rotate command has one input parameter, which

is a vector of three values. In complete analogy to the translate command each value indicates

how many degrees will an object be rotated around the X, Y and Z axis.

The third thing you should notice is that the wheel is standing straight but as a result of its

rotation around the x axis it has moved below the car. This happened because the object was

already moved away from the origin before it was rotate. A good practice for placing objects

inside your model is first to rotate them and them to translate them to the desired position.

Try first rotating the wheel and then translating it, by changing the order of the rotate and
translate commands.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([0,-20,0])rotate([90,0,0])cylinder(h=3,r=8);

It already looks a lot better than the previous position of the wheel.

Try modifying the input parameter of the translate command to make this wheel the front left
wheel of your car.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([-20,-15,0])rotate([90,0,0])cylinder(h=3,r=8);

Try adding the front right wheel of the car by duplicating the last statement and changing
only the sign of one value.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([-20,-15,0])rotate([90,0,0])cylinder(h=3,r=8);

translate([-20,15,0])rotate([90,0,0])cylinder(h=3,r=8);

You should notice that the position of the wheels is not symmetric. This happened because the

cylinder was not created centered on the origin.

Try adding an additional input parameter to the cylinder commands to denote to OpenSCAD
that both wheels should be centered on the origin when first created. Is the position of your
wheels symmetric now?

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([-20,-15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

translate([-20,15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

Completing your first model

Try using what you have learned to add the rear missing wheels to the car. Try adding a
connecting axle to the front and rear wheels.

cube([60,20,10],center=true);

translate([5,0,10])cube([30,20,10],center=true);

translate([-20,-15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

translate([-20,15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

translate([20,-15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

translate([20,15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

translate([-20,0,0])rotate([90,0,0])cylinder(h=30,r=2,center=true);

translate([20,0,0])rotate([90,0,0])cylinder(h=30,r=2,center=true);

Before sharing your script with your friends, it would nice to include some comments to help

them understand your script. You can use a double slash at the start of a line to write anything

you like without affecting your model. By using a double slash OpenSCAD knows that what

follows is not part of the scripting language and simply ignores it.

Try adding a comment above each statement to let your friends know what part of your
model is created with each statement.

// Car body base

cube([60,20,10],center=true);

// Car body top

translate([5,0,10])cube([30,20,10],center=true);

// Front left wheel

translate([-20,-15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

// Front right wheel

translate([-20,15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

// Rear left wheel

translate([20,-15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

// Rear right wheel

translate([20,15,0])rotate([90,0,0])cylinder(h=3,r=8,center=true);

// Front axle

translate([-20,0,0])rotate([90,0,0])cylinder(h=30,r=2,center=true);

// Rear axle

translate([20,0,0])rotate([90,0,0])cylinder(h=30,r=2,center=true);

It’s time to save your model. Hit the save (third) icon on the action bar above the editor to save

your script as a *.scad file. When you are creating a new model remember to save early and

then save often to avoid accidentally losing your work.

If you would like to 3D print your car you can export it as an STL file. You should first hit the

render (second) icon on the action bar below the viewport to generate the STL data of your

model. You should then hit the export as STL icon on the action bar above the editor to save a

STL file of your model.

Creating a second model

Try using everything you learned to create a new simple model. It can be a house, an airplane
or anything you like. Don’t worry about making your model look perfect, just experiment with
your new skills! You will keep learning more technics to create awesome models in the
following chapters.

